Home | Model | Random | Next >

Model: None

Dataset: The Pile

Neuron 0 in Layer 14

Load this data into an Interactive Neuroscope

See Documentation here

Transformer Lens Loading: HookedTransformer.from_pretrained('pythia-350m')



Text #0

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9977. Min Act: -0.1700

Data Index: 6545185 (The Pile)

Max Activating Token Index: 535

Click toggle to see full text

Truncated

 $p$, there exists a quotient $Q$ of $G$ with the following properties. 
 
1.  if $E$ is a finite subgroup of $G$ or conjugated to some $P_j$, then the projection $G \onto Q$ induces an isomorphism from $E$

Full Text #0

<|endoftext|>anski:1998fo; @Hruska:2010iw]. For our purpose we will use the following one. 
 
\[def: relatively hyperbolic\] Let $G$ be a group and $\{ P_1, \dots, P_m\}$ be a collection of subgroups of $G$. We say that $G$ is *hyperbolic relative to* $\{P_1, \dots, P_m\}$ if there exist a proper geodesic hyperbolic space $X$ and a collection $\mathcal Y$ of pairwise disjoint open horoballs satisfying the following properties. 
 
1.  $G$ acts properly by isometries on $X$ and $\mathcal Y$ is $G$-invariant. 
 
2.  If $U$ stands for the union of the horoballs of $\mathcal Y$ then $G$ acts co-compactly on $X \setminus U$. 
 
3.  $\{P_1, \dots, P_m\}$ is a set of representatives of the $G$-orbits of $\set{\stab Y}{Y \in \mathcal Y}$. 
 
The action of $G$ on the space $X$ given by is not acylindrical. Indeed the subgroups $P_j$ can be parabolic. This cannot happen with an acylindrical action [@Bowditch:2008bj Lemma 2.2]. More generally, the elementary subgroups of $G$ are exactly the virtually cyclic subgroups of $G$ and the ones which are conjugated to a subgroup of some $P_j$. As in the case of groups with an acylindrical action, one can prove that $\inj[X]G$ is positive whereas $\nu(G,X)$ and $A(G,X)$ are finite. Proceeding as in we get the following result. 
 
\[res: SC - partial periodic quotient - rel hyp case\] Let $G$ be a group and $\{P_1, \dots, P_m\}$ be a collection of subgroups of $G$ such that $G$ is hyperbolic relatively to $\{P_1, \dots, P_m\}$. Assume that there are only finitely many isomorphism classes of finite subgroups with dihedral shape. There exist $p,N_1\in \N$ such that every integer $n \geq N_1$ multiple of $p$, there exists a quotient $Q$ of $G$ with the following properties. 
 
1.  if $E$ is a finite subgroup of $G$ or conjugated to some $P_j$, then the projection $G \onto Q$ induces an isomorphism from $E$ onto its image; 
 
2.  for every element $g \in Q$, either $g^n=1$ or $g$ is the image a non-loxodromic element of $G$; 
 
3.  there are infinitely many elements in $Q$ which do not belong to the image of an elementary non-loxodromic subgroup of $G$. 
 
#### Mapping class groups. 
 
Let $\Sigma$ be a compact surface of genus $g$ with $p$ boundary components. In the rest of this paragraph we assume that its complexity $3g+p -3$ is larger than $1$. The *mapping class group* $\mcg \Sigma$ of $\Sigma$ is the group of orientation preserving self homeomorphisms of $\Sigma$ defined up to homotopy. A mapping class $f \in \mcg \Sigma$ is 
 
1.  *periodic*, if it has finite order; 
 
2.  *reducible*, if it permutes a collection of essential non-peripheral curves (up to isotopy); 
 
3.  *pseudo-Anosov*, if there exists an homeomorphism in the class of $f$ that preserves a pair of transverse foliations and rescale these foliations in an appropriate way. 
 
It follows from Thurston’s work that any element of $\mcg \Sigma$ falls into one these three categories [@Thurston:1988fa Theorem 4]. The *complex of curves* $X$ is a simplicial complex associated to $\Sigma$. It has been first introduced by Harvey [@Harvey:1981tg]. A $k$-simplex of $X$ is a collection of $k+1$ homotopy classes of curves of $\Sigma$ that can be disjointly realized. Masur and Minsky proved that this new space is hyperbolic [@Masur:1999hc]. By construction, $X$ is endowed with an action by isometries of $\mcg \Sigma$. Moreover Bowditch showed that this action is acylindrical [@Bowditch:2008bj Theorem 1.3]. This action provides an other characterization of the elements of $\mcg \Sigma$. An element of $\mcg \Sigma$ is periodic or reducible (pseudo-Anosov) if and

Text #1

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9977. Min Act: -0.1700

Data Index: 2132698 (The Pile)

Max Activating Token Index: 63

Click toggle to see full text

Truncated

Full Text #1


Text #2

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9821. Min Act: -0.1700

Data Index: 3672504 (The Pile)

Max Activating Token Index: 878

Click toggle to see full text

Truncated

Full Text #2


Text #3

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9508. Min Act: -0.1700

Data Index: 5558861 (The Pile)

Max Activating Token Index: 659

Click toggle to see full text

Truncated

Full Text #3


Text #4

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9508. Min Act: -0.1700

Data Index: 6110216 (The Pile)

Max Activating Token Index: 897

Click toggle to see full text

Truncated

Full Text #4


Text #5

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9039. Min Act: -0.1700

Data Index: 121693 (The Pile)

Max Activating Token Index: 867

Click toggle to see full text

Truncated

Full Text #5


Text #6

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.9039. Min Act: -0.1700

Data Index: 6154981 (The Pile)

Max Activating Token Index: 340

Click toggle to see full text

Truncated

Full Text #6


Text #7

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8882. Min Act: -0.1700

Data Index: 624160 (The Pile)

Max Activating Token Index: 1016

Click toggle to see full text

Truncated

Full Text #7


Text #8

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8882. Min Act: -0.1700

Data Index: 6344189 (The Pile)

Max Activating Token Index: 445

Click toggle to see full text

Truncated

Full Text #8


Text #9

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8726. Min Act: -0.1700

Data Index: 2532476 (The Pile)

Max Activating Token Index: 568

Click toggle to see full text

Truncated

Full Text #9


Text #10

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8726. Min Act: -0.1700

Data Index: 3990794 (The Pile)

Max Activating Token Index: 570

Click toggle to see full text

Truncated

Full Text #10


Text #11

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8570. Min Act: -0.1700

Data Index: 7368520 (The Pile)

Max Activating Token Index: 768

Click toggle to see full text

Truncated

Full Text #11


Text #12

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8413. Min Act: -0.1700

Data Index: 9923685 (The Pile)

Max Activating Token Index: 69

Click toggle to see full text

Truncated

Full Text #12


Text #13

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8413. Min Act: -0.1700

Data Index: 2731901 (The Pile)

Max Activating Token Index: 289

Click toggle to see full text

Truncated

Full Text #13


Text #14

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8257. Min Act: -0.1700

Data Index: 9427724 (The Pile)

Max Activating Token Index: 380

Click toggle to see full text

Truncated

Full Text #14


Text #15

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8257. Min Act: -0.1700

Data Index: 2273824 (The Pile)

Max Activating Token Index: 955

Click toggle to see full text

Truncated

Full Text #15


Text #16

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8257. Min Act: -0.1700

Data Index: 4665144 (The Pile)

Max Activating Token Index: 498

Click toggle to see full text

Truncated

Full Text #16


Text #17

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8101. Min Act: -0.1700

Data Index: 5601361 (The Pile)

Max Activating Token Index: 421

Click toggle to see full text

Truncated

Full Text #17


Text #18

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8101. Min Act: -0.1700

Data Index: 9588452 (The Pile)

Max Activating Token Index: 214

Click toggle to see full text

Truncated

Full Text #18


Text #19

Max Range: 3.9977. Min Range: -3.9977

Max Act: 3.8101. Min Act: -0.1700

Data Index: 1522198 (The Pile)

Max Activating Token Index: 373

Click toggle to see full text

Truncated

Full Text #19